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This paper is concerned with the behaviour of a tube bundle subjected to combined fluidelastic
and turbulence excitation. Here, we formulate the fluidelastic forces based on a simplified,
nonlinear model for a single flexible tube surrounded by rigid neighbours and constrained to
move transverse to the mean flow. We use a flat power spectral density function to express the
turbulence excitation. The resulting system we first examine heuristically, based on a superposi-
tion of both excitation mechanisms. We then assess the merits of this approach via direct
numerical integration of the equation of motion. Lastly, we perform a nonlinear investigation
into the sensitivity of the fluidelastic stability boundary on variations in the random field of
turbulence and generate a stability map. The analysis shows that the fluidelastic stability
boundary defined by an unstable bifurcation may be reduced by turbulence; for long-term
operation, the threshold reduction may approach the size of a hysteresis region. This effect
increases with turbulence intensity and decreases with unstable-limit-cycle amplitude. For
a stable bifurcation, the fluidelastic stability boundary is virtually unaffected by turbulence. In
the latter case, the effect of turbulence is through practical stability definitions made using
amplitude—response curves. ( 1998 Academic Press
1. INTRODUCTION

CROSS-FLOW-INDUCED VIBRATIONS OF TUBE BUNDLES affect the operation of a variety of indus-
trial equipment, particularly associated with power generation technology (e.g. heat ex-
changers and steam generators). Mechanical failures have occurred after several years of
service, due to small-amplitude oscillations caused by turbulence, or after short periods of
time due to large-amplitude, self-excited oscillations. Both excitation mechanisms have
been the subject of extensive experimental and analytical research, leading to predictive
models and design guidelines [see, for example, Pettigrew (1981), Paı̈doussis (1983), Chen
(1984), Singh & Soler (1984) and Weaver & Fitzpatrick (1987)]. Researchers have also
attempted to identify the interaction effect between turbulence and fluidelastic instability.
This, however, has not yielded consistent results, particularly in the practical estimation of
the fluidelastic stability boundary.
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Early experimental studies by Southworth & Zdravkovich (1975), Franklin & Soper
(1977), and Chen & Jendrzejczyk (1981) indicated that turbulence may either increase or
decrease the critical flow velocity for fluidelastic instability, depending on the turbulence
characteristics. In all cases, researchers positioned turbulence generators upstream of the
tested bundles. More recently, Price et al. (1986, 1987) performed a detailed experimental
investigation and found that the presence of turbulence generators has little or no effect on
the onset of fluidelastic instability. The authors concluded that the interstitial flow charac-
teristics beyond the first few rows are governed by the bundle itself, independent of
upstream conditions. This finding makes it difficult to investigate experimentally the
interaction between turbulence and fluidelastic instability in tube bundles. Here, we explore
a theoretical approach.

In our previous theoretical work (Lever & Rzentkowski 1989), we examined the influence
of turbulence on fluidelastic instability in tube bundles through interpretation of ampli-
tude—response curves. Since this was a linearized analysis, the two excitation mechanisms
were superimposed and any coupling effect was omitted. Nevertheless, we showed that
increasing turbulence reduced the apparent stability boundary for fluidelastic instability,
utilizing amplitude—response curves; the size of the reduction depended on the practical
threshold definition used. This observation, to a certain extent, may explain the contradic-
tory results from the aforementioned experimental studies of the problem.

In the present study, we extend this analysis by formulating a nonlinear model for
combined fluidelastic and turbulence excitation of tube bundles. We represent the tube as
a simple, third-order, fluidelastic oscillator and investigate the effect of turbulence on the
location of bifurcation points. To establish the model, the study is focused on the simplest
physical system while retaining the behaviour of full bundles. We thus utilize the nonlinear,
one-dimensional flow equations, from the linearized, steady-state ‘‘tube-in-channel-flow’’
model of Lever & Weaver (1982) for a single flexible tube surrounded by rigid neighbours,
to express the fluidelastic force. We chose this model because it is relatively simple and
yields good agreement with experimental data for parallel triangular and square arrays,
where flow curvature is small and the assumption of one-dimensional flow is reasonable.
We realize that some of the assumptions of the model may not be valid for large tube
motion. It must be appreciated, however, that a more rigorous treatment of the underlying
fluid dynamics requires formulation of a new theory which we feel is beyond the scope of the
present study, which is to investigate the role of turbulence in triggering fluidelastic
instability. This is especially true since, in the vicinity of the fluidelastic stability threshold,
tube motion is of a small amplitude. Moreover, this reformulated nonlinear theory was
already examined by the authors (Rzentkowski & Lever 1992) and, after some modifications
to the flow redistribution mechanism which accounts for most of the modelled character-
istics of fluidelastic instability, was found to give good agreement with test data. We thus
feel that, because of its simple form and the correct assessment of a post-stable behaviour of
a tube bundle (stable versus unstable limit cycle), the theory provides a convenient
analytical platform to include and examine the effects of turbulence, and thus, to achieve the
objective of this study. Here, we use a power spectral density function to formulate the
turbulence force acting on the tube. Based on experimental evidence (Pettigrew & Gorman
1978), we assume that this function is constant (white noise) and proportional to the square
of flow dynamic head over the frequency range of interest.

The resulting system we first examine heuristically via superposition of the two forcing
mechanisms: a third-order fluidelastic solution (limit cycle) and a linear response curve due
to combined excitation. Based on this idealized representation, we develop an analytical
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expression which approximately defines the location of the fluidelastic stability boundary
for coupled excitation. We also use a direct numerical integration of the equation of tube
motion to obtain a fully nonlinear solution. We compare the two solutions and use them
subsequently to study the sensitivity of the fluidelastic stability boundary governed by an
unstable bifurcation to variations in the random field of turbulence. Since the analytical
prediction agrees well with the numerical one, we apply it further to examine the effect of
unstable-limit-cycle amplitude and of the time of equipment operation on the fluidelastic
stability threshold. We also generate a theoretical stability map to compare the linear and
nonlinear stability boundaries over a wide range of mass-damping parameters.

Using this theoretical approach, we show that the interaction mechanism between
fluidelastic instability and turbulence is dependent on the tube nonlinear characteristics.
For an unstable bifurcation, the fluidelastic stability boundary may be reduced by turbu-
lence; the threshold reduction may approach the size of a hysteresis region for long-term
equipment operation. We observe that this effect increases with turbulence intensity and
decreases with unstable-limit-cycle amplitude. For a stable bifurcation, the fluidelastic
stability boundary is virtually unaffected; the effect of turbulence manifests itself through
the interpretation of amplitude—response curves.

2. MODEL FORMULATION

We can examine theoretically the effect of turbulence on fluidelastic instability in tube
bundles only to the extent that the underlying theoretical models represent the physics of
each mechanism. In this study, we limit the modelling to a structurally linear tube which is
surrounded by rigid neighbours and constrained to move transverse to the mean flow.
Through the series of experiments on parallel triangular and square arrays (Lever & Rzen-
tkowski 1993), we showed that, at least in the mass-damping parameter range tested
(mN d

0
"1.9 to 23.5), this simplified system displays similar post-stable behaviour to a fully

flexible bundle. In addition, we assume here that the fluid forces, which consist of a nonlin-
ear fluidelastic force, F

E
(t), a turbulence force, F

T
(t), and a linear fluid-damping force, F

D
(t),

are fully correlated along the tube span. Thus, the simplified equation of motion may be
written as

m
0
ÿ (t)#c

0
yR (t)#k

0
y (t)"F

E
(t)#F

T
(t)#F

D
(t) , (1)

where m
0
, c

0
and k

0
are, respectively, the structural mass, damping, and stiffness coefficients,

and y(t) is transverse-to-flow tube displacement.

2.1. FLUIDELASTIC FORCE

We express the nonlinear, fluidelastic forces based on the linearized, steady-state ‘‘tube-in-
channel-flow’’ model initially developed by Lever & Weaver (1982). We chose this model
because it is relatively simple and yields good agreement with experimental data for parallel
triangular and square arrays, where flow curvature is small and the assumption of one-
dimensional flow is reasonable. Because the original authors completely describe the
underlying flow theory, we will discuss here only the fundamental assumptions of the model
and the modifications necessary to formulate its nonlinear, time-domain extension. In our
earlier study (Rzentkowski & Lever 1992), we already examined this reformulated nonlinear
theory in an attempt to determine whether the original model of Lever & Weaver (1982)
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would correctly predict observed post-stable behaviour of tube bundles. We found that,
with some modifications, it gives good agreement with test data.

2.1.1. ºnderlying flow theory

Figure 1 shows the ‘‘unit cell’’ sufficient to describe the fluidelastic behaviour of a one-
degree-of-freedom tube bundle. A single flexible tube is symmetrically located relative to the
apparent position of neighbouring tubes and undergoes motion, y(t), in the transverse-to-
flow direction only. A highly regular flow field is assumed, with fluid flowing through the
bundle without crossing from one flow channel to the next. The steady streamlines through
the bundle define the boundaries of the ‘‘unit cell’’. The streamtubes are narrow relative to
their length, so that one-dimensional flow assumption can be used.

For incompressible, one-dimensional flow, we may write the area, velocity and pressure
variation along the two streamtubes as the sum of first-order functions of position only, plus
second-order perturbation functions (containing linear and nonlinear terms) of both posi-
tion and time. Employing symmetry, the resulting expressions become

A
i
(s, t)"AM (s)#(!1)i`1a (s, t), a (s, t)(AM (s) ,

º
i
(s, t)"ºM (s)#(!1)i`1u(s, t), u (s, t)(ºM (s) , (2)

P
i
(s, t)"PM (s)#(!1)i`1p (s, t), p(s, t)(PM (s) ,

where the subscript i"1 and 2 refers to the left and right streamtube, respectively. For
small-amplitude motion, the perturbation functions are significantly smaller than the
first-order terms. For large-amplitude motion, tube clashing with a boundary limits the area
perturbation and, therefore, the velocity and pressure perturbations.

Whereas Lever & Weaver (1982) assumed simple harmonic tube motion, the present
formulation requires that the time dependence of y (t) and the perturbation functions remain
Figure 1. ‘‘Unit cell’’ for the fluidelastic model.
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unspecified. As with the original model, we also assume that the streamtube area perturba-
tion follows the tube motion but with a time lag, due to fluid inertia. Further, this time lag
increases linearly with the distance along the streamtube from q"0 at the tube centreline,
s"0, to q"l/º

0
at the ‘‘unit-cell’’ inlet, s"!s

0
(in the time lag formulation, l is the

relevant fluid inertia length, and º
0

is the steady flow velocity at the inlet). Following these
assumptions, we may write

a (s, t)"yAt#q
s

s
0
B . (3)

Note that, because the distance along the streamtube, s, is negative in the direction of the
inlet, the area perturbation lags behind the tube motion, as required.

With the streamtube perturbation function specified, we may obtain the velocity and
pressure variations using the one-dimensional, unsteady continuity and Bernoulli equa-
tions, respectively,
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where h is the flow resistance coefficient. As with the original model, we apply here the
simplifying assumptions of constant area streamtubes, AM (s)"A

0
, and no velocity and

pressure fluctuation at the ‘‘unit cell’’ inlet, u(!s
0
, t)"p (!s

0
, t)"0. Thus, after introduc-

ing the integration variable, m"t#qs/s
0
, the solution of the continuity equation becomes
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) D , (6)

where t
1
,t!q and t

2
,t#qs/s

0
are the time variables. To solve the Bernoulli equation,

we expand this solution into a power series in y(t
2
)/A

0
. This series converges for Dy(t) D(A

0
at s"0, which is also the clashing limit with the ‘‘unit-cell’’ boundary. After series
expansion, the unsteady velocity and pressure perturbation functions take the forms,
respectively,
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where the subscript, n, yields the desired order of solution: n" 0 for linear and n51 for
nonlinear.

Following the ‘‘tube-in-channel-flow’’ theory, we approximate the fluidelastic force acting
on the tube as the pressure difference across its centreline, p(0, t) times an equivalent area
factor of flow attachment, D

E
. As a result, the fluidelastic force per unit tube length becomes
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2.1.2. Nonlinear application

Till this point the theory presented is essentially identical to that of Lever & Weaver (1982).
We simply utilize the nonlinear, one-dimensional flow equations from the initial formula-
tion of the model rather than linearize these as was done originally. We realize, however,
that, for large tube motion, fluid may flow from one flow channel to the next, and the
assumption that the tube vibrates in a channel defined by ‘‘solid boundaries’’ may not be
valid. We should thus perhaps abandon the existing ‘‘unit-cell’’ concept and determine
flow-field variations using two-dimensional fluid mechanics. It must be appreciated that
this approach requires formulation of a new theory and we feel that this is beyond the scope
of the present study, which is to investigate the role of turbulence in triggering fluidelastic
instability, especially since in the vicinity of the fluidelastic stability threshold the tube
motion is small (typically less than 2% of a tube diameter). Thus, as an alternative, we
examine here a simpler change in the underlying flow redistribution mechanism.
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The postulated flow redistribution mechanism, formulated from an analogous transient
problem, appears to be well founded for small tube motion. In this case, fluid inertia
predominates over viscous effects in a near-wake region (its size is limited by the con-
strained streamlines, passing along both sides of a tube, as shown schematically in Figure 1)
and the resultant time lag is a function of flow velocity only. For increasing tube motion,
however, we should perhaps allow also for an unsteady wake effect which may dominate the
process of flow separation and redistribution. As shown by Hara (1987), the movement of
flow separation points governs the phase relation between the tube motion and flow
adjustment. As a result, the time lag increases initially with the amplitude of oscillations and
generates destabilizing fluid forces. Approaching the limit cycle, the time lag decreases
sharply and, in turn, generates stabilizing fluid forces. The flow redistribution mechanism
may thus be both velocity-dependent, due to the perturbation in the free-stream flow for
small tube motion, and amplitude-dependent, due to the perturbation in the near wake for
large tube motion.

It should be noted that in Hara’s experiment the adjacent tubes were free to move and
hence produce fluid coupling effects. Nevertheless, we feel that the results may be qualitat-
ively correct also for a single-flexible tube bundle and assume a simple amplitude depend-
ence to express the time lag in the post-stable region. Specifically, we assume that the
relevant fluid inertia length decreases linearly with the oscillation amplitude, reducing the
time lag in equation (3) from q"l/º

0
for y (t)"0 (trivial linear solution) to q"0 for

y(t)"A
0

(approximate limit-cycle amplitude). This assumption acts as a ‘‘pacemaker’’ for
the underlying instability mechanism and assures the convergence of power-series expan-
sions in equation (9). Also, as shown in our earlier study (Rzentkowski & Lever 1992), it
improves the nonlinear predictions of the model substantially by providing the desired
nonlinear hardening (in the limit cycle). We realize that at present there is little justification
for the assumed amplitude-dependent time lag except that it appears to replicate observed
physical behaviour.

2.2. TURBULENCE FORCE

To express the turbulence force, we choose here the model of Pettigrew & Gorman (1978).
Based on experimental evidence, the authors assume that the power spectral density of the
random, homogeneous field of turbulence per unit tube length, S ( f ), is proportional to the
square of the flow dynamic head expressed in terms of the pitch velocity, º

P
. That is,

S ( f )"C
1

2
C

r
( f )odº2

PD
2

, (10)

where o is the fluid density and d is the tube diameter. The effective random excitation
coefficient, C

r
( f ), defines the shape of the turbulence spectrum. Because this coefficient is

nearly constant in the range of the fundamental frequencies typical for heat exchanger
tubes, we use here a flat excitation power spectrum, C

r
( f )"C

r
.

Note that in equation (10), C
r
has dimensions of s1@2. We eliminate this by introducing

a nondimensional excitation coefficient, C@
r
"C

r
Jº

P
/fd, as suggested by Blevins et al.

(1981) and Chen & Jendrzejczyk (1987). This nondimensionalization yields the final form of
the excitation power spectral density function per unit tube length as

S ( f )"C
1

2
C@

r
o (dº

P
)1.5D

2
. (11)
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We may use equation (11), via inverse Fourier transformation, to generate the turbulence
excitation force, F

T
(t), in equation (1).

2.3. FLUID-DAMPING FORCE

The fluid-damping force is related to the steady-flow drag coefficient, C
D
. As suggested by

Blevins (1977), the fluid-damping force per unit tube length may be formulated as

F
D
"

1

2
C

D
odyR (t)º

0
. (12)

In general, the fluid damping force is nonlinear. Here, for simplicity, we retain only its linear
part, since we observed that the contribution of the higher-order terms to the net system
damping is negligible (Rzentkowski & Lever 1992).

3. APPROXIMATE SOLUTION OF EQUATION OF MOTION

The coupled equation of motion, equation (1), cannot be solved analytically in its full
nonlinear form. Below, we formulate an approximate method based on superposition of
a fluidelastic response with that excited by turbulence.

3.1. FLUIDELASTIC RESPONSE

We consider the system subjected to fluidelastic excitation only, F
T
(t)"0 in equation (1),

and solve the resulting nonlinear equation of motion using the first approximation method
of Kryloff & Bogoliuboff (1947). For convenience, we reduce this equation to the basic
differential form

ÿ(t)#u2y (t)#F[y(t), yR (t)]"0 , (13)

where, unlike in the original theory of Lever & Weaver, F[y (t), yR (t)]"kf [y (t),yR (t)] is
a nonlinear function of tube displacement and velocity which perturbs the simple linear

system oscillating with the frequency u"Jk/m
0

(this frequency differs from u
0

due to
fluidelastic stiffness terms). The constant, k, is a small positive quantity which defines the
size of perturbation, k@u2. After nondimensionalization of equation (13), this condition
takes the form

mN A2A1#
s
0
l BA

d

A
0
BA

D
E

d BA
º

0
udB

2
. (14)

Provided that condition (14) is satisfied, we can assume the solution of equation (13) to be
periodic

y (t)"a(t)cos[ut#'(t)] , (15)

where the amplitude, a(t), and the phase, '(t), are slowly varying functions of time in the
state of equilibrium. Their rate of change is given by the following formulae (Kryloff
& Bogoliuboff 1947), respectively,

aR (t)"
1

2nu P
2n

0

F (a cos#, !au sin#) sin# d# , (16)
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and

#R (t)"u(a) , (17)

where #(t)"ut#'(t) denotes the total phase and u(a) is the amplitude-dependent
frequency of oscillation at the limit cycle. This frequency can be expressed as

u2(a)"u2
0
#

1

na P
2n

0

F (a cos#, !au sin #) cos#d#. (18)

For the subsequent analysis, we reduce the nonlinear function F[y (t), yR (t)] to the third
order, n"2 in equation (9), and assume a limit cycle of constant amplitude, aR (t)"0 in
equation (16). In this way, we obtain the following nondimensional form of the nonlinear
oscillator, representing the solution of equation of motion (1) subjected to fluidelastic
excitation only:

NA
a

dB
3
#mN d

nA
a

d B"0, (19)

where mN d
n
is the net mass-damping parameter and N is the nonlinear fluidelastic term. As

we show later in equation (20), the net mass-damping parameter incorporates the positive
(structural) and negative (fluidelastic) contributions.

Equation (19) represents the bifurcation formula (Thompson 1982). As illustrated sche-
matically in Figure 2(a), it yields two solution branches, corresponding to the real roots of
equation (19): the trivial equilibrium state (linear solution), a/d"0, and the limit cycle
(nonlinear solution), (a/d)2"!mN d

n
/N. The trivial equilibrium state is stable for mN d

n
'0

(attractor) and unstable for mN d
n
(0 (repeller). A dynamic instability arises at the bifurcation

point, mN d
n
"0. Depending on the sign of the nonlinear term, the solution branches of

equation (19) yield two possible theoretical bifurcations: stable for N'0 (solid line) and
unstable for N(0 (dashed line). It should be noted that the stable bifurcation represents
the soft-excited system. This means that for the linearly unstable system, mN d

n
(0, all local

motions tend to the stable (attracting) limit cycle. The unstable bifurcation, on the other
hand, represents the hard-excited system. This means that the linearly stable system,
mN d

n
'0, can lose stability if a finite disturbance carries it beyond the unstable (repelling)

limit cycle.
At this point, it is instructive to compare the response of a third-order oscillator [Figure

2(a)] with that of a tube bundle [Figure 2(b)]. In our earlier experimental studies (Lever
& Rzentkowski 1989, 1993), we have observed that a tube bundle may display hysteresis
behaviour; the response jumps at the critical flow velocity for fluidelastic instability
(mN d

n
"0) for increasing flow, and at a flow velocity lower than critical (mN d

n
'0) for

decreasing flow. Inside the hysteresis region is a finite domain of attraction bounded by the
unstable limit cycle [dashed line in Figure 2(b)]. The hysteresis region diminishes with
increasing mass-damping parameter and may disappear at approximately mN d

0
'30 (Lever

& Rzentkowski 1993). As depicted in Figure 2, these two types of possible post-stable
behaviour of tube bundles, with and without hysteresis, correspond to unstable and stable
bifurcations of a third-order oscillator, respectively (the secondary point of bifurcation,
which indicates the lower limit of the hysteresis region, cannot be displayed by a simple
third-order oscillator). Note that, to allow a direct analogy with a third-order oscillator, we
idealize the tube response curves in Figure 2(b) by removing the effect of turbulence



Figure 2. Idealized representation of possible dynamic bifurcations of a third-order oscillator and fluidelastic
oscillations of a tube bundle.
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buffeting from the overall response. In this way, the equilibrium state for fluidelastic
instability becomes trivial.

The trivial equilibrium state of equation (19) is given by the following set of equations
which defines the net mass-damping parameter and the oscillation frequency:

mN d
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E
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and

(u
0
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E
/d) (s

0
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0
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0
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0
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r
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where º
r
"º

0
/ul denotes reduced flow velocity (u is the frequency of tube oscillations

at a given flow velocity). Note that equation (21) shows explicitly the effect of the fluid-
elastic stiffness term on the frequency of vibration, u, via the natural frequency in quiescent
fluid, u

0
. For u

0
/u"1, this solution is identical to that obtained by Lever & Weaver

(1982).
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As discussed already, the nonlinear solution of equation (19) can be written as

a

d
"S!

md
n

N
. (22)

Equation (22) yields the stable limit cycle for mN d
n
(0 and N'0, and the unstable limit

cycle for mN d
n
'0 and N(0. The nonlinear fluidelastic term, which also defines the size of

the limit cycle, is given by
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with the frequency of oscillations, u, at a given flow velocity, defined as
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Recall that the nonlinear solution is limited by two conditions: Dy(t) D(A
0

(clashing
boundary) required for the function F[y (t), yR (t)] to converge, and l@u2 implying that the
contribution of nonlinear terms to the final solution is very small. The first condition is
always satisfied because of the postulated time lag formulation [q"0 for y (t)"A

0
], while

the latter does not pose any restrictions on the derived solution for lightly damped systems
(d40)10, approximately).

3.2. COMBINED FLUIDELASTIC AND TURBULENCE RESPONSE

Having described the fluidelastic response in detail, it is now possible to investigate the
effect of turbulence on the underlying instability mechanism.

3.2.1. ¸inear response curves

As follows from random vibration theory, the root-mean-square (r.m.s.) response of a lightly
damped, single-degree-of-freedom, linear system to broad band excitation is

A
rms

"

nJ2

2

l
0

k
0
S

S ( f
0
) f

0
d

, (25)

where l
0

is the tube length, f
0

is its natural frequency, k
0

is its structural stiffness coefficient,
and d is its logarithmic decrement of damping. Because both excitation mechanisms are
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superimposed, the fluidelastic forces alter the tube stiffness and damping in equation (25).
Thus, after substitution of equation (11) into equation (25), the r.m.s. tube response to
combined fluidelastic and turbulence excitation takes the nondimensional form

A
rms
d

"

C@
r

8nJ2 A
º

p
f
0
d B

1.5 1

JmN (mN d
n
)
, (26)

where mN d
n
is the net mass-damping parameter. For the linear system under consideration,

the net mass-damping parameter is given by the trivial solution of the equation of motion
subjected to fluidelastic excitation only, equations (20) and (21). Examination of these
equations reveals that the net system damping decreases with flow velocity towards the
linear stability threshold, mN d

n
"0 in equation (20). Thus, the predicted turbulence response,

equation (26), rises asymptotically to infinity. According to this linear model, the location of
this asymptote (linear stability threshold) is not affected by turbulence.

3.2.2. Fluidelastic bifurcation subjected to turbulence

The linear formulation yields infinite tube response at the stability threshold. In fact,
nonlinear fluidelastic forces will limit unstable tube oscillations. To demonstrate this effect,
we require a truly nonlinear solution of the equation of motion (1). However, if we
conceptually ignore coupling between fluidelastic instability and turbulence buffeting, we
may estimate the location of the bifurcation point (nonlinear stability threshold). For this,
we superimpose the linear response due to combined excitation, equation (26), to the
fluidelastic limit cycle prediction, both of which we may describe analytically.
Figure 3 shows graphically this concept.

The stability signalled by stable bifurcation can be qualitatively described by the trivial
equilibrium state, a/d"0, since below the point of bifurcation, mN d

n
'0 in equation (20), all

local motions are asymptotically stable. At the point of stable bifurcation, the nonlinear
response is bounded by a limit cycle, while the linear solution becomes infinite. Because
these curves do not intersect, the linear stability threshold becomes the lowest stability
boundary for the combined system. Therefore, the linear solution is sufficient to establish
the dynamic stability criterion for stable bifurcation subjected to turbulence. Nevertheless,
various practical measures of the stability threshold rely on the combined response to
fluidelastic and turbulence excitation. As we show later, these measures vary with turbu-
lence, even for stable bifurcation.

For unstable bifurcation, the trivial equilibrium state does not guarantee stability
below the point of bifurcation, because the stable domain of attraction is bounded by
an unstable limit cycle. It follows that, even without nonlinear coupling between fluid-
elastic and turbulence excitations, the linear response to combined excitation is sufficient
to initiate instability below the point of fluidelastic bifurcation when it exceeds the
unstable limit cycle. Based on this heuristic approach, the intersection point approximates
the actual stability threshold of a tube bundle subjected to combined excitation. We thus
expect the dynamic stability criterion for the unstable bifurcation to be sensitive to
turbulence buffeting.

We may obtain this intersection point by combining equation (26) with an expression for
the unstable limit cycle. For the latter, we may use the third-order solution of equation (1),
subjected to fluidelastic excitation only, with the amplitude-dependent time lag between
tube motion and flow adjustment, i.e., equation (22) together with equations (23) and (24).



Figure 3. Heuristic representation of linear combined response and fluidelastic bifurcation.
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As shown in our earlier study (Rzentkowski & Lever 1992), this solution yields the correct
qualitative assessment (stable versus unstable limit cycles) and is very close to a fully
nonlinear solution (within 10%) in the vicinity of the stability threshold.

It follows that the approximate stability condition for the nonlinear system, governed by
the unstable limit cycle subjected to turbulence, is given by

(mN d
n
)
T
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8n
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0
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3 N

mN (mN d
n
)
NT

"0, (27)
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where (mN d
n
)
T

and (mN d
n
)
NT

represent the trivial and nontrivial solutions of equation (1)
subjected to fluidelastic excitation only [respectively, n"0 and n"2 in equation (9)]. The
reduced pitch velocity, º

p
/f
0
d, can be related to º

r
by using the following relation:
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where the expressions P/(P!d) and (¹!d )/¹ define bundle pitch and pattern,
respectively.

Note that if (mN d
n
)
T

and (mN d
n
)
NT

were equal (q independent of tube response amplitude),
equation (27) would reduce to
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As follows from equation (27), the nonlinear term, which reduces the mass-damping
parameter at the fluidelastic stability threshold, is directly proportional to the second power
of the turbulence excitation strength, C

r
@, and inversely proportional to the second power of

the unstable-limit-cycle amplitude, J!(md
n
)
NT

/N. Note that these variables are mutually
dependent. That is, an increase in the turbulence excitation strength results in an increase in
the limit-cycle amplitude at the point of intersection between the linear response to
combined excitation and the fluidelastic limit cycle.

As formulated, equation (27) defines the approximate reduction in stability threshold that
results when tube r.m.s. amplitude exceeds the unstable limit cycle. However, any distur-
bance that carries the system beyond the unstable limit cycle may cause instability. Since
this disturbance arises from turbulence buffeting, the r.m.s. response underestimates its
magnitude. We may thus refine this approximation by estimating its actual size: the peak
turbulence response expected within some observation period.

For narrow-band, random tube motion excited by turbulence, the displacement peak is
governed by the Rayleigh probability-density distribution function (Blevins 1977). Thus, the
average number of cycles, N

Y
, before this peak exceeds some value, ½, may be shown to be

(Lever & Rzentkowski 1989)

N
Y
(½)"e(1@2) (Y@p)È, (30)

where p is the standard deviation. Therefore, for a tube oscillating at frequency f, the
average return period in seconds is ¹ (½)"N

Y
(½)/f, and the displacement peak expected in

time ¹ (½) becomes

½"pJ2 ln[ f¹ (½)]. (31)

We may now modify our heuristic approach to seek the velocity at which the linear
response to turbulence exceeds an unstable-limit-cycle amplitude, ½, within an average
observation period ¹(½). Equation (27) thus becomes
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4. NUMERICAL SIMULATION

The aforementioned heuristic approach ignores nonlinear coupling between turbulence and
fluidelastic excitations. We may include this effect using direct numerical integration of the
equation of motion, equation (1). In this method, turbulence can affect tube motion but not
vice versa. We assume that all motion-dependent fluid forces arise from the ‘‘tube-in-
channel’’ theoretical model.

We compute the steady-state, r.m.s. tube response as a function of flow velocity. In this
way, we conduct this numerical simulation much as an experimental investigation; the final
output is an amplitude versus flow velocity response curve.

4.1. MODEL PARAMETERS

The numerical model requires certain simulation parameters for its operation. For a
chosen integration scheme (fourth-order corrector-predictor) we found that a time step
of *t"¹

n
/40 is sufficiently small for accurate and effective simulation. We set the

frequency resolution of the turbulence force spectrum, * f"2f f
0
/K, based on a considera-

tion of the bandwidth of the tube transfer function in still fluid (f+d/2n is the damping
ratio and K is the minimum number of frequency components in the system bandwidth
needed to assure accurate turbulence simulations). We can calculate the resolution error by
comparing the amplitude of linear resonance under harmonic excitation with the amplitude
given by equation (25). For example, for K"1 this error is 25% while K"2 reduces it
below 10%. Combined excitation, however, requires practically infinitely small *f in the
immediate vicinity of the stability threshold. Thus, we choose K"10 for the lowest
damping case examined here, d"0)01, and use the resulting *f for all subsequent simula-
tions.

Having selected the time and frequency steps, we calculate the maximum frequency in the
turbulence force spectrum using the Nyquist criterion, F

.!9
"1/2*t. The length of the

corresponding time series of the turbulence force thus is ¹
.!9

"1/* f. If required, we
conduct simulations of arbitrary length, without the time-consuming computation asso-
ciated with the use of a very long inverse fourier transformation, by piecing together
turbulence-force time series of ¹

.!9
length. We carefully checked this technique against the

use of one very long, unique time series and found it to yield equivalent results.
We express the random nature of the turbulence force by assigning random phases to

each frequency component in the inverse fourier transformation (each set of phases pro-
duces a different turbulence force time series). We found that the steady-state tube response
is essentially independent of this randomizing effect, especially if * f is small compared with
the bandwidth of the transfer function. For example, the maximum discrepancy in com-
puted tube response resulting from random phase selections is within 5% for K"2 and
0)2% for K"80. Therefore, we use only one set of random phases to reduce computational
effort.

4.2. MODEL OPERATION

Figure 4 shows a flow chart for the operation of the coupled model. First, we select the
numerical parameters defining the bundle and flow conditions, together with the simulation
parameters, such as time step and length of simulation. At each flow velocity we then
generate the turbulence force time series from the spectrum, equation (11), using the inverse



Figure 4. Flowchart for numerical simulation.
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Fourier transformation. Next, we calculate the fluidelastic streamtube velocity and time lag.
At this point, the simulation begins with zero initial tube displacement and velocity. We
initially compute the response to turbulence only, using the central difference method as
a starting procedure. At time t"q it becomes possible to calculate the fluidelastic excitation
force. The simulation proceeds, for the prechosen length of time (typically 30min of tube
response), with the r.m.s. tube displacement computed and saved at each time step. We
examine the results for a given flow velocity and, if desired, increment it and repeat the
procedure.

We observed that, for a lightly damped system very near the stability threshold, the
simulation transient time can be extremely long, exceeding 30min of tube response.
Therefore, to perform the simulations near the stability threshold without the prohibitively
long computations, we use the approximate steady-state response value, given by equation
(26), as an initial parameter.
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5. RESULTS

Below, we present the theoretical results obtained with this model for two arrays also
studied experimentally by the authors in 1993: a parallel triangular array of pitch ratio 1)375
and a square array of pitch ratio 1)433. The array parameters are thus expressed in terms of
the physical quantities, describing the tested configurations. As with the experimental
investigation, the tube parameters are d"60mm, f

0
"5)0Hz and d"0)01 (here, we also

use d"0)10). The fluid density is o"1)22kg/m3. For the parallel triangular array, the
random excitation coefficient, which we obtained through direct measurement (Rzen-
tkowski 1991) is C

r
@"0)065$10%. This agrees reasonably well with the value of

C
r
"0)012 s1@2 reported by Pettigrew & Gorman (1978). For the square array, we measured

C
r
@"0)200$10%. Table 1 summarizes all nondimensional parameters required by the

model, together with the empirical coefficients.

5.1. LINEAR RESPONSE CURVES

An early paper by the authors (Lever & Rzentkowski 1989) discussed in detail the
theoretical, linear response to combined turbulence and fluidelastic excitations. Here, we
present a few key results because they also demonstrate tube response to turbulence for
a stable fluidelastic bifurcation.

Figure 5 shows a set of linear, theoretical response curves for a parallel triangular array.
We set the mass-damping parameter at mN d

0
"10 (d"0)01 and d"0)10) and use a range of

the random excitation coefficient, C
r
@"0)065, 0)100 and 0)130, holding the plotting scale

fixed. To facilitate a direct comparison, we also normalize the flow velocity with respect to
the critical for fluidelastic instability (as we discuss later, the critical flow velocities depend
on damping due to the fluidelastic stiffness effect which alters the frequency of tube
oscillation at the stability threshold, i.e., º

P
/f
0
d"7)86 for d"0)01 and º

P
/f
0
d"7)68 for

d"0)10). It can be seen that all curves show a smooth increase in r.m.s. response towards
a vertical asymptote at the critical flow velocity (the normalized flow velocity of 1)0). The
rate of increase depends on the random excitation coefficient used. In experimental situ-
ations, however, the stability boundary is not known and its location must be assigned
based on one of the commonly used definitions: such as (i) an abrupt change in slope of the
response curve, (ii) an amplitude exceedence level, or (iii) an intersection with the velocity
axis of the steepest tangent to the response curve. As demonstrated in Figure 5, an increase
in turbulence reduces the apparent fluidelastic stability threshold, whichever definition is
used (here, as an example, we showed the fixed-amplitude criterion of 0)2% of tube
diameter). Note that, for constant mN d

0
, an increase in damping has a similar effect since, as

follows from equation (26), the heavier-damped tube (lower mN ) shows larger turbulence
TABLE 1
The nondimensional parameters and coefficients required by the model

Array geometry ¹/d A
0
/d s

0
/d D

E
/d l/s

0
C@

r
h C

D

Parallel triangular (P/d) cos a (P/d) !1 (P/d)a (d/P)a — — — 2(A
0
/d)h

a"n/6, P/d"1)375 1)191 0)375 0)720 0)381 4)0 0)065 0)30 0)225

Square P/d (P/d) !1 P/d a/8 — — — 2(A
0
/d)h

a"n/2, P/d"1)433 1)433 0)433 1)433 0)196 4)0 0)200 0)35 0)300



Figure 5. Theoretical linear response curves to combined excitation for mN d
0
" 10 (here, flow velocity is

normalized by the critical).
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response. This effect can lead to the influence of experimentally observed separation of
mN and d on the stability threshold (Lever & Rzentkowski 1989). Nevertheless, it appears that
this is entirely due to the way turbulence affects our interpretation of the response curves;
the linear fluidelastic stability threshold is unaffected by turbulence.

Table 2 compares the linear, steady-state, numerical simulation results for separate
turbulence buffeting and combined excitation with the corresponding analytical solutions
(C @"0)065, simulation time of 30min). For d"0)01, the turbulence r.m.s. response agrees
r



TABLE 2
Comparison of analytical and numerical r.m.s. tube response for the linear solution for (mN d)

0
"10

Normalized flow Damping Analytical solution (% d ) Numerical solution (% d )

velocity d Turbulent Combined Turbulent Combined

0)70 0)01 0)0236 0)0218 0)0237 0)0229
0)80 0)01 0)0288 0)0321 0)0289 0)0340
0)90 0)01 0)0344 0)0539 0)0344 0)0561
0)99 0)01 0)0396 0)1941 0)0396 0)1345
1)01 0)01 0)0408 Unstable 0)0408 Unstable

0)70 0)10 0)0721 0)0664 0)0712 0)0669
0)80 0)10 0)0880 0)0978 0)0867 0)0976
0)90 0)10 0)1051 0)1652 0)1033 0)1624
0)99 0)10 0)1211 0)5835 0)1189 0)6009
1)01 0)10 0)1249 Unstable 0)1226 Unstable

TURBULENCE AND FLUIDELASTIC EXCITATIONS 579
to better than 0)5% while the combined r.m.s. response agrees to better than 5)0% at each
velocity point except very near the stability threshold (the simulation error in the threshold
estimation, resulting from the fluidelastic excitation only, is 0)06%). Just below the stability
threshold, the simulated tube response is extremely sensitive to the details of the turbulence
time series used. This is because of an increasing discretization error associated with the
decreasing bandwidth of the system. For d"0)10, the discretization error is not so
apparent. It can be seen that the turbulence r.m.s. response agrees to better than 2)0%, while
the combined r.m.s. response agrees to better than 3)0% at each velocity point (the
simulation error in the threshold estimation is 0)03%).

These simulation errors are certainly well within the uncertainty of experimental data.
Beside, some variations in the simulated response are unavoidable since we generated
specific time series of finite length, whereas equation (26) applies, strictly speaking, to
infinitely long records. Therefore, we feel that the numerical simulation of combined
fluidelastic and turbulence excitation (at least in linear form) yields reasonable results.

5.2. FLUIDELASTIC BIFURCATION SUBJECTED TO TURBULENCE

Our main interest in examining nonlinear tube response to combined excitation is to
determine the effect of turbulence on the practical stability threshold. As shown in Figure 3,
this analysis requires limit-cycle prediction. We may expect that, to a certain degree,
limit-cycle amplitudes are also affected by turbulence. As shown by Zhu & Yu (1986),
a limit-cycle amplitude of a self-excited system (Van der Pol oscillator was used by the
authors) subjected to random perturbation decreases initially and then increases with
increasing perturbation intensity. Nevertheless, we do not investigate this effect in detail
here and use only one value of the random excitation coefficient for subsequent numerical
simulations.

5.2.1. Fluidelastic limit cycles

We may calculate the fluidelastic limit cycles from equation (22), together with equations
(20), (23) and (24). For the two arrays of interest, Figure 6 shows the predicted amplitudes



Figure 6. Analytically predicted, third-order limit cycle oscillations.
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for a variety of mass-damping parameters: mN d
0
"1, 10, 20, 30, 50 and 100 with d"0)01

(note that the separation in mN and d does not have a direct effect on limit-cycle amplitudes; it
affects only oscillation frequency). For a parallel triangular array, the model predicts
unstable limit cycles followed by stable limit cycles (unstable bifurcation) below mN d

0
+30.

In the higher mass-damping parameter range, the model predicts only stable limit cycles
(stable bifurcation); the rate of increase of limit-cycle amplitudes becomes lower with
increasing mN d

0
. For a square array, we found essentially similar results: an unstable

bifurcation below mN d
0
+50 and a stable bifurcation in the higher mass-damping parameter

range. In both cases, the model predicts the multiple response branches at mN d
0
"1 which, as

we discuss later in some detail, are due to the existence of several stability boundaries in the
region of low mass-damping parameters. Here, for clarity, we show only two upper response
branches which consist of stable and unstable limit cycles.
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It is interesting to note that the contribution of fluidelastic stiffness terms to the final
solution is more pronounced at the stability threshold than at the limit cycle. For both
arrays investigated here, the frequency of tube oscillation at the stability threshold is
reduced by approximately 2)5% for mN d

0
"1 and 0)05% for mN d

0
"100. This effect increases

with damping [lower mN in equation (24)]. For example, for d"0)10 the frequency reduction
at the stability threshold is approximately 25% for mN d

0
"1 and 0)5% for mN d

0
"100. The

main significance of this frequency reduction is to affect the reduced critical velocity,º
P
/f

0
d,

and to lead to the influence of experimentally observed separation of mN and d on the
stability threshold (Lever & Rzentkowski 1989). Similar results were reported by Price
& Paı®doussis (1984) for their semi-empirical dynamic model which is also based on the motion
of a single flexible tube.

Figure 7 compares the analytical and numerical solutions of the equation of motion (1) for
a parallel triangular array. To generate the numerical results, we harmonically excited the tube in
the vicinity of the limit cycle and carefully examined the response record (10 min of tube
response) by checking for an exponential increase or decrease of the oscillation envelope.
A constant-amplitude sine wave signalled a limit cycle: either stable, attracting all local motions
(convergence of numerical solution onto a limit cycle) for flow velocities higher than critical for
fluidelastic instability, or unstable, repelling all local motions (divergence of numerical solution
from a limit cycle) for flow velocities lower than critical for fluidelastic instability. In the latter
case, all local motions in the vicinity of the limit cycle diverged from the limit cycle, either
towards the trivial equilibrium solution, a/d"0, for the amplitude of initial disturbance lower
than that of the limit cycle, or towards infinity for the amplitude of initial disturbance higher
than that of the limit cycle. Thus, at a given flow velocity, we incremented or decremented
the amplitude of initial disturbance in small steps till the transition in the stability of
numerical solution (neither decay nor growth) was found. We used the amplitude of the
initial disturbance, for which the constant-amplitude sine wave was observed, to numer-
ically assess the unstable limit-cycle amplitude. We conducted two separate sets of numer-
ical simulations: first at mN d

0
"10 for the unstable bifurcation and second at mN d

0
"100 for

the stable bifurcation. As indicated in Figure 7, in both cases investigated (stable and
unstable bifurcations), we found a very good agreement between the third-order analytical
solution, equation (22), and the corresponding numerical simulation. The predicted limit-
cycle amplitudes are qualitatively identical (stable versus unstable) and agree to better than
10% at each velocity point. The discrepancy between these solutions is less at the lower
limit-cycle amplitudes near the bifurcation point.

Figure 8 shows experimental response curves obtained by the authors (Rzentkowski
& Lever 1992). It can be seen that, for these same two arrays (each with a single,
transverse-to-flow degree-of-freedom), the nonlinear predictions of the model presented
previously in Figure 6, agree well qualitatively with experiment. We found broad hysteresis
(i.e., unstable limit cycles followed by stable limit cycles at larger amplitudes) in the low
mass-damping parameter range. The observed hysteresis regions diminish with increasing
mass-damping parameter and disappear for mN d

0
'30. Maximum amplitudes decrease with

increasing mass-damping parameter and do not exceed 0)3d for either array. The model
yields very similar results.

5.2.2. Nonlinear response curves

As follows from our heuristic approach (see Figure 3), the interaction mechanism
between fluidelastic excitation and turbulence is dependent on the tube nonlinear



Figure 7. Comparison between analytically predicted and numerically calculated third-order limit cycle oscilla-
tions for unstable (mN d

0
"10) and stable (mN d

0
"100) bifurcations.
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characteristics: stable and unstable bifurcations. Because both types of behaviour are
predicted by the underlying model (see Figure 6), we can use it to assess qualitatively the
effect of turbulence on the fluidelastic stability threshold. We conducted two separate sets of
numerical simulations for a parallel triangular array: first at mN d

0
"10 for the unstable

bifurcation and second at mN d "100 for the stable bifurcation, using the baseline value of

0



Figure 8. Experimental response curves for single-degree-of-freedom tube bundles (Rzentkowski & Lever 1992).
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the random excitation coefficient, C@
r
"0)065. Because of excessive computational effort

near the stability threshold, we conducted this analysis with d"0)10 to reduce the transient
time. In each set of simulations, we compared the simulated, nonlinear tube response to the
analytical expressions for linear asymptote, equation (20), and to the fluidelastic limit cycle,
equation (22).

As shown in Figure 9, the simulated response curves display the expected behaviour. For
the unstable bifurcation, the system experiences a sudden response jump, triggered by
turbulence, to unstable oscillations (limit cycle) at a flow velocity lower than the linear
asymptote. Thus, the numerical simulation confirms that the linear threshold is unconser-
vative. For the stable bifurcation, the system response remains stable for flow velocities



Figure 9. Numerical nonlinear response curves to combined excitation (C@
r
"0)065) for unstable (mN d

0
"10) and

stable (mN d
0
"100) bifurcations. Here, also shown are linear and nonlinear fluidelastic predictions.
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lower than critical, and then follows the analytically predicted limit cycle in the post-stable
region. This suggests that the linear asymptote becomes the lowest stability boundary for
the combined system (this is in agreement with the concept presented in Figure 3). As
discussed in Section 5.1, turbulence does affect our interpretation of response curves.



TABLE 3
Turbulence sensitivity of the unstable bifurcation for mN d

0
"10 and d"0)10: comparison between the

numerical and analytical solutions; ¹(½ )"10min, C@
r
varied

Array C @
r

Critical flow velocity, º
P
/f
0
d Threshold reduction (%)

geometry Numerical Equation (18) Numerical Equation (18)

Parallel 0)000 7)68 7)68 — —
triangular 0)065 7)44 7)45 3)1 3)0

0)130 7)31 7)32 4)8 4)7

Square 0)000 11)70 11)70 — —
0)200 10)64 10)64 9)1 9)1
0)400 10)08 10)09 13)9 13)8
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Specifically, an increase in turbulence response leads to an apparent decrease in the critical
velocity assigned on the basis of standard threshold definitions (see Figure 5). Also,
turbulence appears to reduce the amplitude of the post-stable limit cycles for both stable
and unstable bifurcations.

For the unstable bifurcation, the simulated response curve shows a lowering of the
stability threshold, as predicted by the analytical superposition approach [equation (31)].
To examine this effect more closely and to validate equation (31), we conducted a separate
series of simulations for a parallel triangular and a square array. We varied the random
excitation coefficient to demonstrate the effect of increasing turbulence on the stability
threshold. Table 3 presents the analytical and numerical results for mN d

0
"10. To generate

the analytical results, we set the average return period at ¹(½)"10min (typically used
during experimental investigations to allow tube motion to stabilize at a given flow
velocity). Thus, for a direct comparison with the analytical results, the simulation running
time, after reaching steady-state response level, was also 10min. For the baseline value of
the random excitation coefficient, the resultant threshold reduction is 3.1% for a parallel
triangular array and 9.1% for a square array. These are almost identical values to those
predicted by the analytical solution. Note that these results also show the correct qualitative
effect; the threshold reduction increases with the turbulence strength, C@

r
.

We also examined the role of unstable-limit-cycle amplitude on the threshold reduction
caused by turbulence. For this, we varied the nonlinear fluidelastic parameter, N, in
equation (31); we calculated this coefficient from equation (23) and increased it by a factor of
four [as follows from equation (22), this is equivalent of halving the unstable-limit-cycle
amplitude]. For the baseline value of the random excitation coefficient, these results are
shown in Table 4. Here, we also increased the tube average return period to ¹(½)"1 year
to model the long-term operation of steam generators or heat exchangers. It can be seen
that the resultant threshold reduction may reach 10% for a parallel triangular array and
20% for a square array, approaching the size of the experimentally observed hysteresis
region.

5.2.3. Stability map

For the model examined here, the analytical prediction [equation (31)], which we derived
by ignoring coupling between turbulence and fluidelastic excitations, agrees very well with



TABLE 4
Turbulence sensitivity of the unstable bifurcation for mN d

0
"10 and d"0)10: ¹(Y)"1 yr, N (unsta-

ble-limit-cycle amplitude) varied

Array Nonlinear coefficient Critical flow velocity Threshold Reduction
geometry N º

P
/f
0
d (%)

Parallel 0 7)68 —
triangular Baseline, equation (11) 7)39 3)8

4]baseline 7)21 6)1

Square 0 11)70 —
Baseline, equation (11) 10)32 11)8

4]baseline 9)63 17)7
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the numerical simulation. Thus, the stability condition for a randomly oscillating tube
subjected to the fluidelastic excitation can be approximately expressed as

(mN d
n
)
T
#2 ln[ f¹(½)]A

1

8n
C@

rB
2

A
º

P
f
0
d B

3 N

mN (mN d
n
)
NT

"0 for N(0,

(mN d
n
)
T
"0 for N50,

(32)

where (mN d
n
)
T

and (mN d
n
)
NT

represent, respectively, the trivial and nontrivial form of equation
(20), and the nonlinear fluidelastic term N is given by equations (23) and (24).

Figure 10 shows the numerical solution of equation (32), together with the fluidelastic
prediction only [linear stability curve, (mN d

n
)
T
"0], in the form of a stability map for

a parallel triangular and a square array examined above (d"0)10), using the baseline value
of the random excitation coefficient and ¹(½)"10min. Especially for the square array, this
analysis suggests that the effect of superposition of turbulence on fluidelastic stability
threshold cannot be ignored. Note also that the multiple stability boundaries at low
mass-damping parameters, resulting from the time delay between tube motion and the
associated fluid forces, are absorbed by the interaction between turbulence and unstable
limit cycles.

6. DISCUSSION

The trends predicted by the nonlinear model agree with our interpretation of the interaction
between turbulence and fluidelastic excitation, as depicted in Figure 3. Nevertheless,
uncertainty exists in the quantitative results. In particular, experiments indicate that
unstable-limit-cycle amplitudes may be much lower than those predicted here (Lever
& Rzentkowski 1993). This makes the array much more susceptible to turbulence-triggered
instability. Also, the turbulence field in actual steam generators or heat exchangers may not
be uniform, so C@

r
may vary with location. Thus, the authors caution against using this

model as a design tool.
Nevertheless, our study shows that turbulence can clearly trigger fluidelastic

instability for the case of unstable bifurcation. This suggests that a conservative design
approach is appropriate, i.e., the lower limit of hysteresis should be used as the practical
fluidelastic stability threshold (this will also prevent any transient excitation of fluidelastic
instability).



Figure 10. Theoretical stability curves (d"0)10) showing the effect of turbulence on the fluidelastic stability
threshold for a parallel triangular and a square array: C@

r
"0)065 and C@

r
"0)200, respectively. The possible peak

size of turbulence buffeting is calculated using ¹ (½)"10 min.
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7. CONCLUSIONS AND RECOMMENDATIONS

We have conducted a theoretical study to examine the effect of turbulence on fluidelastic
instability in tube bundles. The study was focused on the simplest physical system while
retaining the behaviour of full bundles. The fluidelastic model was thus conceptually
idealized to represent the tube as a simple, third-order fluidelastic oscillator subjected to
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turbulence excitation. Although the model is oversimplified on the basis of the underlying
fluid mechanics, it gives the correct qualitative assessment of the post-stable behaviour of
a tube bundle and provides physical insight into the role of turbulence in triggering
fluidelastic instability. Here, we investigated stable and unstable bifurcations because both
types of behaviour have been observed experimentally and were also predicted by the
fluidelastic model. Based on theoretical considerations and a series of numerical simula-
tions, we derived an approximate stability condition for a randomly oscillating tube
subjected to fluidelastic excitation. This leads to some general conclusions regarding the
role of turbulence in prediction of fluidelastic instability.

(a) For stable bifurcation (no hysteresis) linear theory yields the lowest stability threshold. In
this case, the fluidelastic stability boundary cannot be reduced by interaction with
turbulence. However, the response to turbulence below the threshold can shift the
practical stability threshold assigned on the basis of commonly used definitions. For most
of them, increasing response to turbulence decreases the apparent stability threshold.

(b) For unstable bifurcation (hysteresis) a nonlinear theory is required for stability analysis.
In this case, interaction with turbulence lowers the fluidelastic stability boundary. The
threshold reduction increases with turbulence excitation strength and decreases with
unstable-limit-cycle amplitude. For long-term operation, this reduction may approach
the size of the hysteresis region. That is, the lower limit of the hysteresis region is the
practical stability threshold for equipment design.

The threshold reduction, based on superposition of the linear response to turbulence with
the third-order fluidelastic limit cycle, agrees well with fully nonlinear numerical results
(direct integration of the equation of motion). This provides a simple way of examining the
role of turbulence in reducing the fluidelastic stability threshold and it may be applicable to
other nonlinear fluidelastic models. It has to be remembered, however, that idealizations
have been made here to formulate this heuristic analysis. Consequently, considerable scope
for further work exists, as follows.

(i) The existing ‘‘unit-cell’’ concept may not be valid for large tube motion. Consideration
should be given to utilize two-dimensional fluid mechanics to formulate a better
nonlinear model for fluidelastic instability in tube bundles. In view of the present level of
effort, however, this may be very challenging.

(ii) The postulated flow redistribution mechanism, which accounts for most of the modeled
characteristics of fluidelastic instability, requires experimental validation. Particularly
important is the determination of the velocity and amplitude dependence of the
assumed phase lag. Unfortunately, these experiments are rather difficult to perform due
to the high level of turbulence generated by tube bundles.
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APPENDIX: NOMENCLATURE

a limit-cycle amplitude
c
0

structural damping coefficient
d tube diameter
f, f

0
frequency of tube oscillation: flow-velocity-dependent and natural, respectively

h flow resistance coefficient
k
0

structural stiffness coefficients
l
0

tube length
l relevant fluid inertia length
m, m

0
tube mass: per unit length and effective,
respectively

mN mass parameter, m/od2
mN d

n
, m6 d

0
mass-damping parameter: structural and net, respectively

n nonlinear solution index
s position coordinate along streamtube
s
0

distance along streamtube to inlet
t, t

1
, t

2
time variable

y(t), yR (t), ÿ(t) transverse-to-flow tube coordinates: position, velocity and acceleration,
respectively

A
0

steady streamtube area at unit-cell inlet
A

3.4
root-mean-square tube displacement

C
D

drag-dependent force coefficient
C

r
, C@

r
random excitation coefficient: dimensional and nondimensional, respectively

D
E

equivalent area of pressure force
F
D

drag-dependent fluid force
F
E

motion-dependent fluidelastic force
F
T

turbulence force
F
.!9

Nyquist frequency
N nonlinear coefficient
N

Y
(½) average number of cycles required to exceed some value of Y

P array pitch
¹ transverse array pitch
¹(½) tube average return period
¹

n
period of tube oscillation

¹
.!9

length of turbulence force time series
S( f ) power spectral density function
º

0
, º

p
, º

r
, º

u
steady flow velocity: at unit-cell inlet, pitch, reduced and upstream, respectively

½ tube displacement limit
a angle defining array pattern
d logarithmic decrement of damping
*f frequency bandwidth
*t time increment
f damping ratio
o fluid density
p standard deviation
q time lag between tube motion and flow adjustment
u, u

0
angular frequency of oscillation: flow-velocity-dependent and natural,
respectively
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